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Crystal Structure of PriB, a Component of
the Escherichia coli Replication Restart Primosome

in vitro conversion of bacteriophage φX174 single-
stranded DNA (ssDNA) to its duplex replicative form
(Schekman et al., 1975). Historically, this system pro-
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University of Wisconsin Medical School vided a model for lagging strand DNA synthesis wherein

the role of the primosome is to repeatedly synthesize550 Medical Sciences Center
1300 University Avenue short RNA oligonucleotides along the DNA template to

prime Okazaki fragment synthesis. The seven proteinsMadison, Wisconsin 53706
2 Physical Biosciences Division comprising the primosome, PriA, PriB, PriC, DnaT,

DnaB, DnaC, and DnaG, were isolated biochemicallyLawrence Berkeley National Laboratory
University of California, Berkeley based on this system (Schekman et al., 1975; Wickner

and Hurwitz, 1974). Subsequently, it was shown thatBerkeley, California 94720
E. coli possesses two primosomes: one that catalyzes
replisome assembly at the bacterial origin of replication
(oriC) and involves three of the defined primosome pro-Summary
teins (DnaB, DnaC, and DnaG), and a second that initi-
ates replication at the φX174 origin (primosome assem-Maintenance of genome stability following DNA dam-
bly site, pas) and involves all seven proteins. While DnaBage requires origin-independent reinitiation of DNA
(the replicative helicase), DnaC (the helicase loadingreplication at repaired replication forks. In E. coli, PriA,
protein), and DnaG (primase) were established as essen-PriB, PriC, and DnaT play critical roles in recognizing
tial factors in chromosomal DNA replication initiating atrepaired replication forks and reloading the replisome
oriC, the biological roles of PriA, PriB, PriC, and DnaTonto the template to reinitiate DNA replication. Here,
were less clear (Kaguni and Kornberg, 1984). Much prog-we report the 2.0 Å resolution crystal structure of
ress has been made in recent years to elucidate theE. coli PriB, revealing a dimer that consists of a single
biological roles of the φX174 primosome proteins. It isstructural domain formed by two oligonucleotide/oli-
now clear that PriA, PriB, PriC, and DnaT function togosaccharide binding (OB) folds. Structural similarity
catalyze the reactivation of replication forks that haveof PriB to single-stranded DNA binding proteins re-
stalled at sites of DNA damage. These proteins haveveals insights into its mechanisms of DNA binding.
become collectively known as the replication restart pri-The structure further establishes a putative protein
mosome (Sandler and Marians, 2000).interaction surface that may contribute to the role of

E. coli primosome protein B (PriB) was originally iden-PriB in primosome assembly by facilitating interac-
tified as one of several factors comprising “protein n,”tions with PriA and DnaT. This is the first high-resolu-
an N-ethylmaleimide-sensitive protein complex requiredtion structure of a protein involved in oriC-independent
to support replication of φX174 ssDNA (Low et al., 1982).replisome loading and provides unique insight into
The gene encoding PriB protein appears to have arisenmechanisms of replication restart in E. coli.
by duplication of the gene encoding single-stranded
DNA binding protein (SSB) with subsequent evolution

Introduction that led to its specialized function in replication (Pono-
marev et al., 2003; Zavitz et al., 1991). Despite their

Complete and faithful replication of the genome requires proposed common lineage, E. coli PriB and SSB have
the ability of cells to respond to DNA damage. Under limited amino acid sequence similarity (Figure 1A). Fur-
normal growth conditions, replication forks formed at the thermore, the priB gene is not well conserved among
bacterial origin of replication, oriC, frequently encounter sequenced bacterial genomes as homologs have been
sites of DNA damage that can result in their inactivation identified only in the �- and �-subdivisions of proteo-
(reviewed in Cox et al., 2000). These stalled replication bacteria (Ponomarev et al., 2003). At present, no priB
forks must be efficiently repaired to allow replication of homologs have been identified in eukaryotic genomes.
the genome to resume. Processes that reinitiate replica- While it is likely that most organisms have a requirement
tion at repaired forks thus represent major housekeep- for restarting repaired replication forks following DNA
ing functions in bacteria that are essential for viability. damage, it is not yet clear if a PriB-like activity is uni-
Reloading DNA synthesis machinery onto repaired repli- formly utilized.
cation forks requires the combined activities of enzymes The function of PriB in the bacterial replication restart
involved in DNA replication, recombination, and repair, primosome is not well understood at the molecular level.
thereby providing a link between these critical aspects PriB physically interacts with SSB and binds naked
of genome maintenance. ssDNA or SSB-coated ssDNA in vitro (Allen and Korn-

In E. coli, a number of proteins, collectively referred berg, 1993; Low et al., 1982). It is thought that PriB
to as the primosome, are responsible for reactivating assembles into the primosome following binding of PriA
repaired replication forks. The E. coli primosome pro- to the appropriate DNA substrate, such as a D-loop
teins were first identified as factors necessary for the recombination intermediate, after which PriB assists in

recruiting DnaT into the primosomal complex (Liu et al.,
1996; Liu and Marians, 1999; Ng and Marians, 1996).*Correspondence: jlkeck@wisc.edu
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Figure 1. Structure of E. coli PriB

(A) Secondary structural elements of PriB are shown above the corresponding residues in the primary sequence, which is colored to indicate
residues that are highly similar (teal) or identical (green) to E. coli SSB. Underlined residues are well conserved among 16 bacterial PriB family
members. Dashed lines indicate regions of the primary sequence absent from the model due to lack of electron density.
(B) Representative solvent-flattened experimental electron-density map at 2.0 Å resolution contoured at 1.3 � above the mean, rendered with
the program RIBBONS (Carson, 1997). The stick model overlaying the electron density is that of the refined PriB model and is colored according
to atom type with carbon atoms in green, oxygen atoms in red, and nitrogen atoms in blue.
(C) Orthogonal views of a ribbon diagram of the crystal structure of PriB. Chain A is colored red and chain B is colored blue. Individual �

strands in chain A are numbered as in (A). Dotted lines represent regions of the protein that are absent from the model.
(D) Orthogonal views of a ribbon diagram of the crystal structure of E. coli SSB (Raghunathan et al., 2000). Only two molecules of the SSB
tetramer are rendered and they are colored as in (C). Ribbon diagrams were rendered with the program RIBBONS (Carson, 1997).

The complex of PriA, PriB, and DnaT may represent the SSB, we have identified a surface of PriB that is pre-
dicted to play a role in binding ssDNA. Furthermore,minimal machinery necessary to recruit the replicative

helicase, DnaB, and helicase loading protein, DnaC, to we have demonstrated using mutational analysis that
several aromatic and basic residues on this surface ofthe site of primosome assembly. DnaB unwinds duplex

DNA and recruits the final component of the primosome, PriB directly contribute to ssDNA binding. The structure
of PriB also reveals a possible protein interaction sur-DnaG primase.

Deletions of priB in E. coli have essentially wild-type face to which the primosome assembly activity of PriB
might be attributed. This is the first high-resolutionphenotypes, an observation that conflicts with the sup-

posed role of PriB in primosome assembly based on structure of any of the proteins involved in oriC-indepen-
dent replisome loading and provides unique insight intothe φX174 system (Sandler et al., 1999). As possible

reconciliation of this discrepancy, Sandler et al. reported a critical aspect of genome maintenance in E. coli.
that a priBC double mutant has poor viability and a
slowed growth rate, akin to priA mutants. Similar to priB Results and Discussion
mutants, mutations that disrupt only priC result in near
wild-type phenotypes. This raises the possibility that Structure of E. coli PriB Protein

We crystallized a selenomethionine-incorporated vari-PriB and PriC share redundant functions in the replica-
tion restart primosome (Sandler et al., 1999). However, ant of the full-length E. coli PriB protein and determined

its structure to 2.0 Å resolution. Multiwavelength-anom-biochemical or structural redundancy between PriB and
PriC have not been demonstrated to date. alous dispersion (MAD) phasing techniques were used

to generate an electron-density map that was readilyIn this report, we examine the physical basis for PriB
function in primosome-mediated replication restart. We interpretable (Figure 1B). The asymmetric unit contains

two molecules in a homodimeric arrangement: the modelpurified and crystallized a recombinant form of full-
length E. coli PriB and determined its structure to 2.0 Å for the first molecule (chain A) includes amino acid resi-

dues 1–100 (of 104 total residues), excluding residuesresolution by X-ray diffraction. The structure shows that
PriB forms a homodimeric �-barrel with two oligonucleo- 81–88, and the second (chain B) includes amino acid

residues 1–98, excluding residues 19–24 and 82–89 (Fig-tide/oligosaccharide binding (OB) folds. Each monomer
contributes one OB-fold in the PriB dimer. Based on ure 1). Electron density was not observed for excluded

residues, likely reflecting the dynamic nature of thesecomparison of the structure of PriB with that of E. coli
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Table 1. Data Collection, Phasing, and Refinement

Anomalous
Data Collection Peak Inflection Remote Phasing Statistics Refinement

Wavelength (Å) 0.9797 0.9798 1.0200 Resolution (Å) 34–2.0 Resolution (Å) 20.0–2.0
Resolution (Å) 34–2.0 (2.1–2.0) 34–2.0 (2.1–2.0) 34–2.0 (2.1–2.0) Figure of 0.276 Rwork/Rfree

b 25.9/28.5
(last shell Å) merit

Multiplicity 11.7 (10.1) 7.8 (6.8) 7.5 (5.5) (after density 0.737 RMSD (�) bond lengths 0.012
(last shell) modification)

Completeness (%) 99.7 (99.8) 99.6 (99.8) 98.8 (95.5) RMSD (Å) 1.15
(last shell) bond angles

Rsym (%)a (last shell) 12.8 (58.7) 10.1 (58.0) 9.3 (44.7) Ramachandran statistics
I/� (last shell) 14.2 (5.1) 13.6 (4.9) 13.9 (4.6) % core region 93.3

% allowed region 6.7
% generously or 0.0

disallowed regions

a Rsym � ��j|Ij � �I	|/�Ij, where Ij is the intensity measurement for reflection j and �I	 is the mean intensity for multiply recorded reflections.
b Rwork/free � �||Fobs| � |Fcalc||/|Fobs|, where the working and free R factors are calculated using the working and free reflection sets, respectively.
The free reflections (5% of the total) where held aside throughout refinement.

elements of the PriB structure. The structure was refined Dimerization of PriB
In the crystal structure of PriB, the dimerization interfaceto a final R-factor of 0.259 (Rfree 0.285) with good bond

geometries. No residues fall into disallowed regions of is extensive and intertwined, with portions of one mole-
cule wrapping around the other (Figure 2A). The twoRamachandran space (Table 1).

The E. coli PriB dimer comprises a single structural molecules comprising the crystallographic asymmetric
unit are covalently linked by two disulfide bonds, onedomain characterized by a �-barrel from which four

prominent �-hairpins extend (Figures 1 and 2). The between Cys48 of chain A and Cys80 of chain B, and
the other between Cys80 of chain A and Cys48 of chain�-barrel is flanked by 
 helices that connect the �3

and �4 strands in each monomer. Collectively, these B (Figure 2B). Furthermore, extensive contacts are made
through hydrogen bonding between residues 1 throughsecondary structural elements are organized into two

OB-folds, one contributed by each monomer of the PriB 11 of the N-terminal �1 strands of each molecule in the
PriB dimer, bridging the three-stranded � sheets into adimer (Figure 1C). The core of the �-barrel is formed on

one side by two antiparallel � sheets, one from each single, extended six-stranded � sheet. Additional ele-
ments of the dimerization surface are contributed bymolecule of PriB in the dimer, that combine to produce

an extended, six-stranded � sheet. The opposite side the L23 loops packing against residues in the �3, �4,
and �5 strands of the adjacent protomer. This interfaceof the �-barrel is also formed by two antiparallel �

sheets, but this face of the �-barrel does not form a involves a complex blend of contacts, including van der
Waals interaction surfaces and ionic interactions (Figurecontinuous, extended � sheet as the individual � sheets

are separated by the L45 loops. The bases of the L45 2B). Additional dimerization contacts exist at the bases
of the L45 loops. The total surface area buried uponloops extend outward approximately perpendicular to

the plane of the �-barrel (Figure 1C, upper). As described dimerization is approximately 2700 Å2. Taken together,
the characteristics of the dimerization interface suggestabove, the distal residues of these loops are absent

from the PriB model due to lack of interpretable electron that the individual PriB protomers may not be stable
structures on their own but would favor dimerizationdensity. In contrast, the L23 loops are well defined in the

PriB electron density. Although they connect the �2 and (Nooren and Thornton, 2003).
Biochemical evidence supports the dimeric form of�3 strands, whose ends project away from the �-barrel,

these loops fold back along the core of the protein, lying PriB observed in the crystal structure. The relative mobil-
ity of PriB through a denaturing polyacrylamide gel un-nearly parallel to the long axis of the �-barrel (Figure

1C, lower). der reducing conditions of 100 mM �-mercaptoethanol
is approximately 12,000 Da, although a fraction of theWhile the core of the �-barrel is dominated primarily

by hydrophobic residues, the two major surfaces of the protein migrates at approximately 24,000 Da (data not
shown). Under oxidizing conditions, the ratio of the�-barrel show a distinct polarity in the abundance of

charged residues (Figure 3B). The surface of the PriB 24,000 Da band relative to the 12,000 Da band increases,
suggesting that an equilibrium exists in solution be-dimer corresponding to the continuous six-stranded �

sheet contains ten of the twelve glutamate residues and tween a dimeric form linked by disulfide bonds and other
structures. Mass spectrometry of native PriB and sele-all four aspartate residues, resulting in a net negative

charge on this surface of the �-barrel. In contrast, the nomethionine-incorporated PriB revealed that the slower
migrating band has a mass of 23,455 Da with six incorpo-opposite surface and the sides of the �-barrel contain

ten of the twelve arginine residues and all eight lysine rated selenomethionine residues, compared to a mass
of 11,728 Da for the faster migrating band with threeresidues (Lys82 and Lys84 of both chains, and Lys89 of

chain B are located in the L45 loops and are absent from incorporated selenomethionine residues (data not
shown). These mass spectrometry data are consistentthe model), resulting in a net positive charge on this

surface of the �-barrel. with PriB existing in solution as a mixture of covalently
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Figure 2. Dimerization Interface of PriB

(A) Orthogonal views of the surface of PriB, colored as in Figure 1. The views are of the same orientation as in Figure 1C and indicate the
extensive interdigitization between protomers in the dimer. Surfaces were rendered with the program GRASP (Nicholls et al., 1991).
(B) Close-up view of the dimerization interaction surface involving the L23 loop. Individual � strands are numbered as in Figure 1A. Several
residues that mediate dimerization are indicated. Ribbons and the surface of chain B are colored as in Figure 1C.

linked dimer and alternate configurations (e.g., noncova- arrangement of OB-folds. This fold is common to many
proteins that bind single-stranded nucleic acids and haslently linked dimer).

Conflicting reports exist on the oligomeric status of been found in a wide range of proteins with seemingly
unrelated primary sequence (Murzin, 1993). Specifically,PriB. Initial purification and characterization of PriB by

Low et al. (1982) indicated that the protein exists as a the �-barrel core of PriB is strikingly similar to that of
E. coli SSB (Figures 1C and 1D). PriB and SSB alsodimer in solution, although it was determined that only

one molecule of PriB is required to form a functional share a common dimerization interface, as both proteins
employ the N-terminal �1 strand to link adjacent mono-prepriming intermediate on φX174 ssDNA. Based on

the extensive contacts that comprise the dimerization mers. The loops of PriB, however, show significant dif-
ferences in both length and conformation compared tointerface in the PriB crystal structure reported herein,

we suggest that the dimeric form of PriB is likely to be those of SSB (Figures 1C and 1D). This is not unex-
pected, as the length and conformation of loop regionsthe biologically active form of the protein.
within OB-folds tend to vary among individual proteins
depending upon the nature of the substrate to whichComparison to Single-Stranded DNA
they bind (reviewed in Theobald et al., 2003). FurtherBinding Protein
differences exist in the extent of multimerization of PriBBased on sequence analysis, Ponomarev et al. (2003)
compared to SSB, an observation that has importantconcluded that E. coli PriB likely arose from SSB by a
implications for the type of protein-protein interactionsgene duplication event and later acquired a specialized
in which each protein participates (described below).function in DNA replication. Consistent with this hypoth-
Differences also exist between specific amino acid resi-esis, a search of the Protein Data Bank using the pro-
dues of SSB that are known to play important rolesgram DALI revealed close similarity of the structure of
in binding DNA and the analogous residues of PriB. APriB to that of prokaryotic and eukaryotic SSB proteins
discussion of the implications of these differences forfor which structural information exists, such as E. coli
DNA binding by PriB follows.SSB (Raghunathan et al., 2000), D. radiodurans SSB

(Bernstein et al., 2004), human replication protein A
(Bochkarev et al., 1999), and human mitochondrial SSB Implications for Nucleic Acid Binding

The presence of an SSB-like fold in PriB would seem a(Yang et al., 1997). PriB and E. coli SSB share approxi-
mately 11% identity and 27% similarity at the level of reasonable explanation for its observed in vitro ssDNA

binding activity (Allen and Kornberg, 1993; Low et al.,amino acid sequence (Figure 1A) and their structures
share a number of overall features. 1982). However, four highly conserved, key aromatic

residues involved in DNA binding by E. coli SSB are notThe most prominent similarity of PriB to SSBs is the
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Figure 3. Surface Potential and Residue Conservation of PriB

(A) Ribbon diagram of PriB. The two molecules of PriB are colored as in Figure 1C.
(B) The surface of the PriB dimer is colored by its electrostatic surface potential at � 6 KBT/e for positive (blue) or negative (red) charge
potential.
(C) The surface of the PriB dimer is colored as in Figure 1A by its conservation with E. coli SSB. PriB residues present at positions of three
key aromatic residues of E. coli SSB are indicated with the equivalent SSB residues in parentheses. Also indicated are surface exposed
aromatic residues Phe42 and Trp47 of PriB. (A), (B), and (C) represent the same orientation of PriB.

conserved in the OB-folds of PriB, raising the question while a structurally analogous residue of SSB Trp88
could not be identified in PriB as it lies within the disor-of how PriB binds DNA. The crystal structure of E. coli

SSB with bound oligonucleotides indicates that the aro- dered L45 loop (Figure 3C). It is notable, however, that
no aromatic residues exist within the L45 loop of PriB,matic side chains of residues Trp40, Trp54, Phe60, and

Trp88 make critical contacts with ssDNA through base so the residue that is a positional equivalent of SSB
Trp88 is not likely to play a role in base stacking interac-stacking interactions (Raghunathan et al., 2000). The

analogous residues of PriB, based on their position in tions with DNA. Thus, aromatic base-stacking residues
that are structurally homologous to those found in E. colithe structure, are Glu38, Gln49, and Ser55, respectively,
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Figure 4. ssDNA Binding by PriB

(A) Orthogonal views of ribbon diagrams of the crystal structures of PriB and SSB. Chains are colored as in Figure 1C and D. Single-stranded
DNA oligonucleotide is colored cyan in the SSB ribbon diagram. Residues of PriB and SSB involved in ssDNA binding are represented as
stick models and are colored orange. Note that PriB residue Lys82, located at the base of the L45 loop, is absent from the model and its
labeled position is an approximation. Ribbon diagrams were rendered with the program PyMol (DeLano, 2002).
(B) Wild-type PriB (closed diamonds); F42A (open triangles); W47A (closed squares); K82A (open circles); and W47A,K82A (open squares)
were serially diluted and incubated with a fluorescein-conjugated ssDNA oligonucleotide as described in Experimental Procedures. Apparent
dissociation constants were calculated by converting anisotropy values to fraction ssDNA bound as a function of PriB concentration. Measure-
ments are reported in triplicate and error bars represent standard deviations of the mean.

SSB are not found in PriB. However, alignment of the structural and biochemical studies with E. coli SSB dem-
onstrated the importance of electrostatic interactionsstructures of both proteins revealed that Trp47 of PriB

is positioned approximately 3 Å from the analogous po- for ssDNA binding. Specifically, residues Lys43, Lys62,
Lys73, and Lys87 show reduced accessibility to chemi-sition of Trp54 in SSB (Figure 3C left, and Figure 4A).

Close proximity of PriB Trp47 to the position of residue cal modification upon ssDNA binding and are within
contact distance of the nucleotide backbone in theTrp54 of SSB suggests that PriB Trp47 may play a role

in nucleic acid binding. In addition, Trp47 is highly con- structure of the E. coli SSB:DNA complex (Chen et al.,
1998; Raghunathan et al., 2000). Similar to what is ob-served among sequenced bacterial PriB homologs, fur-

ther supporting a role for this residue in the function of served for E. coli SSB, the putative DNA binding pocket
of the PriB OB-fold is strikingly electropositive (FigurePriB (Figure 1A). One additional aromatic residue of PriB

is found at the surface of the protein, Phe42 (Figure 3C 3B left). Interestingly, of the eight lysine residues of the
PriB dimer, only Lys82 is positionally conserved with aleft). While not conserved with an aromatic residue of

SSB involved in DNA binding, PriB Phe42 is located on lysine residue of SSB involved in contacting nucleic acid,
Lys87. Located at the base of the L45 loop, PriB Lys82the same side of the �-barrel that binds DNA in SSB and

is near the position of Phe60 in SSB from the adjacent appears to be in a prime position to make contacts with
ssDNA (Figure 4A).protomer, suggesting that PriB Phe42 could be involved

in DNA binding (Figure 4A). Of the remaining aromatic To ascertain whether Lys82 plays a role in ssDNA
binding, we constructed a mutated version of PriB inresidues of PriB, Phe29 and Phe77, neither is surface

exposed and is not likely involved in binding DNA. which this residue is substituted for alanine and tested
the ability of this mutant PriB protein to bind ssDNA usingTo test the role of PriB Trp47 and Phe42 in ssDNA

binding, we constructed mutants in which these resi- fluorescence anisotropy as described above. Compared
with wild-type PriB, the Lys82 alanine-substitution mu-dues are substituted for alanine. Using fluorescence an-

isotropy to measure binding of these mutant PriB proteins tant showed a significant defect in ssDNA binding (Fig-
ure 4B). The apparent Kd of the Lys82 mutant for theto a 30-base, fluorescently labeled ssDNA oligonucleo-

tide, we observed that the Trp47 and Phe42 alanine- 30-base ssDNA oligonucleotide is 218.2 � 9.4 nM, a
defect greater than 6-fold compared to wild-type PriBsubstitution mutants are defective in binding ssDNA

compared to wild-type PriB (Figure 4B). While wild-type
PriB bound the ssDNA oligonucleotide with an apparent
Kd of 34.6 � 7.7 nM, the Trp47 and Phe42 mutants

Table 2. ssDNA Binding Constants for PriB Variants
showed apparent Kd values of 112.3 � 7.2 nM and

PriB Variant Apparent Kd, nM72.8 � 11.5 nM, respectively (Table 2). Both mutants
appear to be correctly folded based on measurements of wild type 34.6 � 7.7

F42A 72.8 � 11.5secondary structure by circular dichroism spectroscopy
W47A 112.3 � 7.2(data not shown). These data support a role for aromatic
K82A 218.2 � 9.4residues Trp47 and Phe42 in ssDNA binding by PriB.
W47A,K82A 426.6 � 52.3

In addition to aromatic base stacking interactions,
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(Table 2). Combined with the Trp47 alanine-substitution In this report, we have described the crystal structure
of the E. coli PriB homodimer. Based on structural simi-mutation, the defect in ssDNA binding of the Lys82 ala-

nine-substitution mutation is exacerbated, with an ap- larity of PriB to single-stranded DNA binding proteins
and on mutational analysis, we have identified surfaceparent Kd of 426.6 � 52.3 nM for the Trp47/Lys82 double

mutant (Figure 4B and Table 2). Similar to the Trp47 and residues of PriB that are involved in ssDNA binding as
well as a potential protein interaction surface. We hy-Phe42 mutants, both the Lys82 single mutant and the

Trp47/Lys82 double mutant appear to be correctly pothesize that DNA binding by PriB may have become
specialized for specific DNA structures that exist at re-folded based on measurements of secondary structure

by circular dichroism spectroscopy (data not shown). paired replication forks. Furthermore, the potential pro-
tein interaction surface of PriB may be involved in itsThese data support a critical role for PriB Lys82 in ssDNA

binding. primosome assembly function by binding PriA and DnaT.
Thus, the OB-folds of the PriB dimer probably representTwo additional lysine residues reside within the L45

loop of PriB, Lys84 and Lys89. We speculate that these modular but integral components of the larger assembly
of proteins that comprise the intact primosome. Furtherresidues, like Lys82, might also play an important role

in binding ssDNA. While it is not clear if the remaining investigation will be required to determine the nature of
the physical interaction between PriB and other primo-electropositive residues of PriB play a role in ssDNA

binding, the localization of all eight lysine residues of some proteins such as PriA and DnaT, and to address
the functional role of ssDNA binding by PriB in the repli-the PriB dimer, as well as Trp47 and Phe42, to the region

corresponding to the classic OB-fold ligand binding sur- cation restart primosome. Taken together, these fea-
tures provide new insights into the physical basis forface suggests that this face is likely the major site of

ssDNA binding by PriB. Taken together, it appears that PriB function in origin-independent replisome loading
in E. coli replication restart pathways.PriB binds ssDNA on the same general surface of its

OB-folds as E. coli SSB, although this surface has likely
been adapted to bind DNA in a different manner com- Experimental Procedures

pared to SSB. This feature may reflect one of the ways
Molecular Cloning of priB and priB Mutantsin which PriB has attained a specialized role in DNA
The priB gene of E. coli was amplified from strain K12 genomic DNAreplication.
by polymerase chain reaction (PCR) using primers oML102 (5�-GCG
TAT TCC ATA TGA CCA ACC GTC TGG TGT TGT CC) and oML103

Implications for Protein Binding (5�-GTC ACG GAT CCC TAG TCT CCA GAA TCT ATC AA). The PCR-
amplified product was cloned into the pET28.b expression vectorE. coli PriB significantly differs from SSB in its quater-
(Novagen) using NdeI and BamHI restriction sites. The resultingnary structure. To date, all known bacterial SSB proteins
plasmid, pML101, contains sequence coding for a six-histidine tagassemble four OB-folds in their active state. In most
and thrombin cleavage site fused to the 5� end of priB. The recombi-bacteria, including E. coli, SSB forms homotetramers
nant priB gene is under the control of a T7 promoter for overexpres-

with each monomer contributing a single OB-fold (Rag- sion in hosts harboring T7 polymerase controlled by the lacUV5
hunathan et al., 2000). Variations on this theme exist in promoter. Plasmid pML101 was transformed into BL21(DE3) E. coli

to allow recombinant PriB protein overexpression following induc-the Deinococcus-Thermus group of bacteria in which
tion with isopropyl-�-D-thiogalactopyranoside (IPTG). Mutant priBSSB proteins form homodimers. In these cases, how-
genes were constructed using the QuikChange site-directed muta-ever, each monomer possesses two OB-folds, resulting
genesis kit (Stratagene) according to the manufacturer’s instruc-in assembly of four OB-folds upon dimerization (Egg-
tions. Mutant F42A was generated with primers oML111 (5�-GTG

ington et al., 2004). Unlike SSB, E. coli PriB is homodi- CAG GAG GAA GCC GGC GCT CAC CGG CAG GCG TGG TG) and
meric and has two OB-folds. Since it does not appear oML112 (5�-CAC CAC GCC TGC CGG TGA GCG CCG GCT TCC

TCC TGC AC). Mutant W47A was generated with primers oML117that the PriB dimer forms higher order oligomers, an
(5�-GGC TTT CAC CGG CAG GCG GCG TGT CAA ATG CCC GTTimportant consequence of this arrangement is exposure
AT) and oML118 (5�-ATA ACG GGC ATT TGA CAC GCC GCC TGCof a large surface area on one side of the �-barrel, analo-
CGG TGA AAG CC). Mutant K82A was generated with primersgous to an oligomerization interface found in SSBs. It
oML115 (5�-GGG TTC ATT TCA TGC CAC GCG GCA AAG AAC GGA

is tantalizing to speculate that this surface serves as a CTG AG) and oML116 (5�-CTC AGT CCG TTC TTT GCC GCG TGG
protein interaction surface for PriB as well, but that it CAT GAA ATG AAC CC). Double-mutant W47A,K82A was generated

with primers oML117 and oML118 in the context of the previouslyhas evolved for association with heterologous proteins.
constructed K82A mutation. The fidelity of wild-type and mutantAs a component of the E. coli replication restart primo-
priB genes was confirmed by DNA sequencing.some that is important for primosome assembly and

activity, PriB is thought to interact with several other
Purification of PriB Proteinsprimosome proteins. Specifically, PriB is thought to bind
Cultures of BL21(DE3) E. coli harboring plasmid pML101 were growndirectly to PriA at a repaired replication fork or D-loop
in minimal medium containing 52 g·mL�1 selenomethionine and 50

DNA structure and may help stabilize the binding of PriA
g·mL�1 kanamycin at 37�C to an OD600 of 0.6. IPTG was added to

at the site of primosome assembly (Ng and Marians, 1 mM and growth was continued for 4 hr. Cells were harvested by
1996). Upon formation of the DNA:PriA:PriB complex, centrifugation at 5,000 � g and lysed in 20 mM Tris·HCl (pH 7),

1 M NaCl, 10 mM imidazole, 1 mM Tris(2-carboxyethyl)phosphineDnaT is recruited into the preprimosomal complex, facil-
hydrochloride (TCEP), and 1 mM phenylmethylsulfonyl fluorideitated by interactions with PriB (Liu et al., 1996). While
(PMSF) by sonication on ice. Lysates were clarified by centrifugationit is not readily apparent which regions of PriB partici-
at 26,000 � g and His-tagged PriB was bound to nickel-NTA agarosepate in these protein-protein interactions with PriA and
(Qiagen). The nickel-NTA agarose beads were washed with lysis

DnaT, our results suggest that the electronegative, con- buffer and bound proteins were eluted in 20 mM Tris·HCl (pH 7), 1 M
tinuous six-stranded � sheet that forms a major surface NaCl, 250 mM imidazole, and 1 mM TCEP. The nickel-NTA agarose

eluant was dialyzed against 20 mM Tris·HCl (pH 7), 0.3 M NaCl, andof the �-barrel is an attractive candidate.
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